[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2124)

1790

MCA 4th Semester Examination Operational Research (NS) MCA-403

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all selecting one question each of the sections A, B, C and D and all the subparts of the questions in section E.

SECTION - A

1. Use graphical method to solve the following linear programming problem.

Minimize Z = 20x + 10ysubject to the constraints $x+2y \le 40$, $3x+y \ge 30$, $4x+3y \ge 60$ & $x,y \ge 0$. (12)

2. Show that the following linear programming problem maximize z=3x+5y subject to the constraints x-2y≤6, x≤10, y≥1 and x, y≥0. has an unbounded solution. (12)

SECTION - B

3. A firm manufacturer two products x and y on machines I and II as shown below:

Machine	Pro	duct	Available Hours		
* T	Χ	Υ			
I	30	20	300		
11	5	10	110		
Profit per unit (Rs)	6	8			

- Formulate this problem as an LP problem.
- Determine the optimum product mix.

Write the dual of this problem.

(12)

A project has the following time schedule:

Activity	1-2	1-3	1-4	2-5	3-6	3-7	4-6	5-8	6-9	7-8	8-9
Time in weeks	2	2	1	4	8	5	3	1	5	4	3

Construct PERT network and compute

Total float for each activity.

Critical path and its duration.

(12)

SECTION - C

Determine the initial basic feasible solution to the following transportation problem using Vogel's approximation method:

Destination

Source

	D ₁	D ₂	D ₃	- D ₄	Supply
S ₁	1	2	1	4	30
S ₂	3	3	2	1	30
S ₃	4	2	5	9	40
Demand	20	40	30	10	

(12)

- Give an algorithm to solve an assignment problem. (6) 6. : (i)
 - Show that an assignment problem is a special case of a transportation problem. (6)

SECTION - D

7. Solve the following game graphically:

Ρ	lay	/e	r	В

		B ₁	B ₂	В ₃	B ₄
Player A	A ₁	2	2	3	2
	A ₂	4	3	2	6

(12)

- Explain the concept of economic order quantity (EOQ). What are the basic ideas behind this concept? (6)
 - Discuss the various costs involved in an inventory model.

SECTION - E

- 'Linear programming has no real-life applications'? Do you agree with this statement? Discuss.
 - Define iso-profit and iso-cost lines. How do these help us to obtain a solution to an LP problem.
 - Discuss briefly 'duality' in linear programming.
 - Explain the basic logic of arrow networks.
 - Discuss briefly the balanced transportation problem.
 - Explain how to resolve degeneracy in a transportation problem.
 - (vii) Explain two person zero-sum game, giving a suitable example.
 - (viii) What will be the effect on the EOQ model with shortages if the shortage cost is very high? $(8 \times 1\frac{1}{2} = 12)$